堆排序(七)

堆排序

堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。堆排序可以说是一种利用堆的概念来排序的选择排序。分为两种方法:

  1. 大顶堆:每个节点的值都大于或等于其子节点的值,在堆排序算法中用于升序排列;
  2. 小顶堆:每个节点的值都小于或等于其子节点的值,在堆排序算法中用于降序排列;

堆排序的平均时间复杂度为 Ο(nlogn)。

1. 算法步骤

  1. 创建一个堆 H[0……n-1];

  2. 把堆首(最大值)和堆尾互换;

  3. 把堆的尺寸缩小 1,并调用 shift_down(0),目的是把新的数组顶端数据调整到相应位置;

  4. 重复步骤 2,直到堆的尺寸为 1。

2. 动图演示

动图演示

3. JavaScript 代码实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
var len;    // 因为声明的多个函数都需要数据长度,所以把len设置成为全局变量

function buildMaxHeap(arr) { // 建立大顶堆
len = arr.length;
for (var i = Math.floor(len/2); i >= 0; i--) {
heapify(arr, i);
}
}

function heapify(arr, i) { // 堆调整
var left = 2 * i + 1,
right = 2 * i + 2,
largest = i;

if (left < len && arr[left] > arr[largest]) {
largest = left;
}

if (right < len && arr[right] > arr[largest]) {
largest = right;
}

if (largest != i) {
swap(arr, i, largest);
heapify(arr, largest);
}
}

function swap(arr, i, j) {
var temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}

function heapSort(arr) {
buildMaxHeap(arr);

for (var i = arr.length-1; i > 0; i--) {
swap(arr, 0, i);
len--;
heapify(arr, 0);
}
return arr;
}

4. Python 代码实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
def buildMaxHeap(arr):
import math
for i in range(math.floor(len(arr)/2),-1,-1):
heapify(arr,i)

def heapify(arr, i):
left = 2*i+1
right = 2*i+2
largest = i
if left < arrLen and arr[left] > arr[largest]:
largest = left
if right < arrLen and arr[right] > arr[largest]:
largest = right

if largest != i:
swap(arr, i, largest)
heapify(arr, largest)

def swap(arr, i, j):
arr[i], arr[j] = arr[j], arr[i]

def heapSort(arr):
global arrLen
arrLen = len(arr)
buildMaxHeap(arr)
for i in range(len(arr)-1,0,-1):
swap(arr,0,i)
arrLen -=1
heapify(arr, 0)
   return arr

5. Go 代码实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
func heapSort(arr []int) []int {
arrLen := len(arr)
buildMaxHeap(arr, arrLen)
for i := arrLen - 1; i >= 0; i-- {
swap(arr, 0, i)
arrLen -= 1
heapify(arr, 0, arrLen)
}
return arr
}

func buildMaxHeap(arr []int, arrLen int) {
for i := arrLen / 2; i >= 0; i-- {
heapify(arr, i, arrLen)
}
}

func heapify(arr []int, i, arrLen int) {
left := 2*i + 1
right := 2*i + 2
largest := i
if left < arrLen && arr[left] > arr[largest] {
largest = left
}
if right < arrLen && arr[right] > arr[largest] {
largest = right
}
if largest != i {
swap(arr, i, largest)
heapify(arr, largest, arrLen)
}
}

func swap(arr []int, i, j int) {
arr[i], arr[j] = arr[j], arr[i]
}

6. java代码实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
//构建最小堆
public static void MakeMinHeap(int a[], int n){
for(int i=(n-1)/2 ; i>=0 ; i--){
MinHeapFixdown(a,i,n);
}
}
//从i节点开始调整,n为节点总数 从0开始计算 i节点的子节点为 2*i+1, 2*i+2
public static void MinHeapFixdown(int a[],int i,int n){

int j = 2*i+1; //子节点
int temp = 0;

while(j<n){
//在左右子节点中寻找最小的
if(j+1<n && a[j+1]<a[j]){
j++;
}

if(a[i] <= a[j])
break;

//较大节点下移
temp = a[i];
a[i] = a[j];
a[j] = temp;

i = j;
j = 2*i+1;
}
}
public static void MinHeap_Sort(int a[],int n){
int temp = 0;
MakeMinHeap(a,n);

for(int i=n-1;i>0;i--){
temp = a[0];
a[0] = a[i];
a[i] = temp;
MinHeapFixdown(a,0,i);
}
}

作者:搜云库技术团队
出处:https://www.souyunku.com
首发微信公众号:搜云库技术团队,微信号ID:souyunku
版权归原创作者所有,任何形式转载请联系作者

# sort

评论

Your browser is out-of-date!

Update your browser to view this website correctly. Update my browser now

×